(Chaudhuri \& Wieghardt, 1987). For small metal ions ($M=\mathrm{Co}^{\mathrm{III}}, \mathrm{Ni}^{\mathrm{III}}$) the $M-\mathrm{N}$ bonds are stretched as a result of interligand and intraligand $\mathrm{H} \cdots \mathrm{H}$ repulsions (Thöm, Boeyens, McDougall \& Hancock, 1984; Wieghardt et al., 1986). The bond stretching can be substantial; for example, from 1.925 to $1.97 \AA$ for the $\mathrm{Co}^{\text {III }}-\mathrm{N}$ bond. A metal ion with the $M-\mathrm{N}$ bond length of $2.08 \AA$ fits ideally between two tacn ligands. For larger metal ions like Cd^{2+} a, possibly small, $M-\mathrm{N}$ bond compression is predicted. It results from attractive van der Waals forces and the resistance of $\mathrm{N}-M-\mathrm{N}$ bond angles to compression (Thöm et al., 1984). For (1) and (2) we observe mean $\mathrm{Cd}-\mathrm{N}$ bond lengths of 2.36 (1) and 2.36 (6) \AA, respectively. The mean $\mathrm{N}-\mathrm{M}-\mathrm{N}$ angles within the chelate rings are 75.7 (4) and $75(1)^{\circ}$, respectively. Comparison with the other CdN_{6}-type complexes mentioned in the Introduction does not indicate any statistically significant $\mathrm{Cd}-\mathrm{N}$ bond compression in the case of $\left[\mathrm{Cd}(\operatorname{tacn})_{2}\right]^{2+}$.

The N_{6} coordination polyhedron of $\left[\mathrm{Cd}(\operatorname{tacn})_{2}\right]^{+}$ can be described as an octahedron strongly elongated along one of its threefold axes of rotation. Due to the position on a centre of inversion, three $\mathrm{N}-\mathrm{Cd}-\mathrm{N}$ angles are exactly 180°. Another consequence of the crystallographically imposed inversion symmetry is the fact that ligands bonded to the same Cd atom must be enantiomeric. Thus, the fivemembered $\mathrm{CdN}_{2} \mathrm{C}_{2}$ chelate rings have λ conformation in one ligand and δ conformation in the adjacent one. The tacn macrocycles have the following average bond lengths (ranges of individual values in parentheses): (1) N-C 1.479 (7) [1.468 (4)1.490 (4)], C-C 1.522 (7) [1.512 (5)-1.531 (5) \AA]; (2) $\mathrm{N}-\mathrm{C} 1.46$ (5) [1.32 (2)-1.52 (1)], $\mathrm{C}-\mathrm{C} 1.47$ (13)
[1.24 (2)-1.64 (3) \AA]. The remaining parts of the structures do not show any unusual features.

We wish to thank W. Saak for technical assistance. Financial support from the Deutsche Forschungsgemeinschaft and the Bundesministerium für Forschung und Technologie is gratefully acknowledged. HS thanks the Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie for the award of a Liebig fellowship.

References

Breitwieser, M., Göttlicher, S. \& Paulus, H. (1984). Z. Kristallogr. 166, 207-212.
Chaudhuri, P. \& Wieghardt, K. (1987). Prog. Inorg. Chem. 35, 329-436.
Keller, E. (1986). SCHAKAL86. Program for the Graphical Representation of Molecular and Crystallographic Models. Univ. of Freiburg, Germany.
Kuehn, G. D., Rodriguez-Garay, B., Bagga, S. \& Phillips, G. C. (1990). Plant Physiol. 94, 855-857.

Liu, S. \& Huang, J. (1986). Acta Chim. Sin. 44, 288-291.
Oshima, T. (1983). Methods Enzymol. 94, 401-411.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
Strasdeit, H. \& Pohl, S. (1988). Z. Naturforsch. Teil B, 43, 1579-1588.
Tabor, C. W. \& Tabor, H. (1984). Annu. Rev. Biochem. 53, 749-790.
Thöm, V. J., Boeyens, J. C. A., McDougall, G. J. \& Hancock, R. D. (1984). J. Am. Chem. Soc. 106, 3198-3207.

Wieghardt, K., Walz, W., Nuber, B., Weiss, J., Ozarowski, A., Stratemeier, H. \& Reinen, D. (1986). Inorg. Chem. 25, 1650-1654.
Yamaguchi, T. \& Ohtaki, H. (1979). Bull. Chem. Soc. Jpn, 52, 1223-1224.

Structure of nido-[8,8,8-($\left.\left.\mathrm{PMe}_{\mathbf{2}} \mathbf{P h}\right)_{\mathbf{3}} \mathbf{- 8 , 7}-\mathrm{RhSB}_{9} \mathrm{H}_{\mathbf{1 0}}\right]$

By George Ferguson* and Alan J. Lough
Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

and Siobhan Coughlan and Trevor R. Spalding*
Department of Chemistry, University College, Cork, Ireland

(Received 12 July 1991; accepted 12 August 1991)

Abstract

Tris(dimethylphenylphosphine)-7-thia-8-rhoda-9, $10-\mu H$-nido-undecaborane(10), $\quad \mathrm{C}_{24}-$

^[* E-mail addresses: GF CHMFERG@VM.UOGUELPH.CA and TRS STCH8006@IRUCCVAX]

0108-2701/92/030440-04\$03.00
$\mathrm{H}_{43} \mathrm{~B}_{9} \mathrm{P}_{3} \mathrm{RhS}, M_{r}=656.8$, monoclinic, $P 2_{1} / c, a=$ 15.794 (2), $\quad b=12.020$ (3), $\quad c=17.119$ (2) A,$\quad \beta=$ 98.21 (1) ${ }^{\circ}, V=3217$ (2) $\AA^{3}, Z=4, D_{x}=1.35 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=7.5 \mathrm{~cm}^{-1}, \quad F(000)=$ 1352, $T=294 \mathrm{~K}, R=0.022$ for 5421 observed © 1992 International Union of Crystallography
reflections. The title complex has a nido RhSB_{9}-cage structure with an open RhSB_{3} face and Rh adjacent to S . The Rh atom is bonded to three $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands. One phosphine is trans to the S atom in the open face, a second is trans to the B atom bonded to Rh in the open face and the third is perpendicular to both these $\mathrm{Rh}-\mathrm{P}$ bonds and the open RhSB_{3} face. The $\mathrm{Rh}-\mathrm{P}$ distances for these ligands are 2.2979 (5), 2.4538 (6) and 2.3869 (5) \AA respectively. The $\mathrm{Rh}-\mathrm{S}$ distance is $2.3757(5) \AA$.

Introduction. The complex $\left[8,8-\left(\mathrm{PPh}_{3}\right)_{2}-8,7-\right.$ $\mathrm{RhSB}_{9} \mathrm{H}_{10}$ ((I) is unusual because it has a Wadian closo electron count but a nido structure (Ferguson, Jennings, Lough, Coughlan, Spalding, Kennedy, Fontaine \& Stibr, 1990). We now show that reaction of (I) with excess $\mathrm{PMe}_{2} \mathrm{Ph}$ in dichloromethane affords a compound with a nido electron count and nido structure $\left[8,8,8-\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}-8,7-\mathrm{RhSB}_{9} \mathrm{H}_{10}\right]$, (II), in 70% yield. We decided to investigate the structure of (II) and to compare it with (I) to ascertain what, if any, were the effects of the addition of the extra ligand at the Rh atom on the RhSB_{9} cage.

Experimental. An orange plate crystal of (II) which measured $0.33 \times 0.38 \times 0.18 \mathrm{~mm}$ was mounted on a glass fibre with its long axis approximately parallel to the φ axis of the goniometer. The setting angles of 25 reflections with $10<\theta<18^{\circ}$ were measured on a CAD-4 diffractometer and used to determine accurate cell constants and crystal orientation matrix. Intensities of reflections with indices $h 0$ to 20, $k 0$ to $15, l-21$ to 21 with $2<2 \theta<54^{\circ}$ measured $[\omega-2 \theta$ scans; ω-scan width $(0.6+0.35 \tan \theta)^{\circ}$] with graphitemonochromated Mo $K \alpha$ radiation. Lorentz, polarization and absorption corrections (Gaussian integration, transmission coefficients 0.766 to 0.888) were applied. The intensities of three standard reflections measured every 120 min remained constant and no decay correction was required. 7791 reflections were measured, 7003 unique ($R_{\text {int }}=0.012$), and 5421 had I $>3 \sigma(I)$. These were labelled observed and used in the structure analysis. Space group $P 2_{1} / c$ (systematic absences $h 0 l$ if $l=2 n+1 ; 0 k 0$ if $k=2 n+1)$ confirmed by successful least-squares refinement. The structure was solved by the heavy-atom method and remaining non- H atoms found from subsequent difference syntheses. All H atoms were visible in difference maps at intermediate stages of the refinement. The non-bridging H atoms were included
in the calculations restrained to ride on the atom to which they were bonded ($\mathrm{C}-\mathrm{H} 0.95$ and $\mathrm{B}-\mathrm{H}$ $1.08 \AA$). The H atom bridging B9 and B10 was included and refined with an isotropic thermal parameter using as starting coordinates the position found from a difference map. Refinement was by full-matrix least-squares calculations on F, initially with isotropic and finally with anisotropic thermal parameters for all non-H atoms. The final cycle of refinement included 347 variable parameters. $R=$ $0.022, w R=0.030$, goodness of fit $1.29, w=1 /\left[\sigma^{2}\left(F_{o}\right)\right.$ $\left.+0.0004\left(F_{o}^{2}\right)\right]$. Max. shift/e.s.d. in final cycle $<$ 0.005 ; density in final difference map $\pm 0.33 \mathrm{e}^{\AA^{-3}}$. Scattering factors and anomalous-dispersion corrections from International Tables for X-ray Crystallography (1974, Vol. IV). All calculations were performed on a PDP-11/73 computer using SDPPlus (B. A. Frenz \& Associates, Inc., 1983). Atomic coordinates and selected dimensions are given in Tables 1, 2 and 3.* Fig. 1 is a view of molecule (II) prepared using ORTEPII (Johnson, 1976) showing the numbering scheme.

Discussion. According to Wade's approach to cluster bonding-structure relationships (Wade, 1976), compound (I) should have an 11 -atom closo structure being analogous with $\left[\mathrm{B}_{11} \mathrm{H}_{11}\right]^{2-}$. Compound (II) would be comparable with $\left[\mathrm{B}_{11} \mathrm{H}_{11}\right]^{4-}$ and have a structure derived from a 12 -atom closo icosahedral $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ cage by the excision of one vertex (BH) unit. Fig. 1 shows the gross RhSB_{9}-cage structure of (II) to be that expected for $\left[\mathrm{B}_{11} \mathrm{H}_{11}\right]^{4-}$ according to Wade's rules.
It is of interest to compare the cage interatomic distances in (I) and (II) since the latter formally has two more electrons in bonding molecular orbitals (Wade, 1976). Table 2 lists the comparable distances around Rh, S and \mathbf{P}, the ranges of $\mathbf{B}-\mathbf{B}$ distances, and the $\mathrm{P}-\mathrm{Rh}-\mathrm{P}$ angles together with the differences in these values. In general most distances in (II) are not significantly different (differences $<3 \sigma$) from the corresponding values in (I) with the following noteworthy exceptions: (a) the $\mathrm{Rh}-\mathrm{B} 9$ distance in (II) $[2.254$ (2) \AA] is considerably longer by $0.108 \AA$; (b) the $\mathrm{Rh}-\mathrm{B} 3$ [2.274 (2) \AA] and S-B3 [2.061 (2) \AA] distances in (II) are significantly longer by 0.032 and $0.026 \AA$ respectively. The $\mathrm{Rh}-\mathrm{S}$ distance in (II) [2.3757 (5) \AA] is slightly shorter by $0.0012 \AA$ than the value found for (I) but the difference is only 2σ. Clearly, the most notable effect of the coordination

[^1]Table 1. Positional and thermal parameters $\left(\AA^{2}\right)$ with e.s.d.'s in parentheses

Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as: $B_{\text {eq }}=(4 / 3)\left[a^{2} B_{11}\right.$ $\left.+b^{2} B_{22}+c^{3} B_{33}+a b(\cos \gamma) B_{12}+a c(\cos \beta) B_{13}+b c(\cos \alpha) B_{23}\right]$. The bridging hydrogen, H , was refined with an individual isotropic thermal parameter.

	x	y	z	$B_{\text {eq }}$
Rh8	0.26094 (1)	0.00863 (1)	0.11257 (1)	1.904 (2)
S7	0.21617 (3)	0.16548 (4)	0.03279 (3)	2.70 (1)
P1	0.14797 (3)	0.05998 (5)	0.19045 (3)	2.48 (1)
P2	0.38020 (3)	0.09573 (5)	0.19026 (3)	2.53 (1)
P3	0.28240 (4)	-0.16399 (4)	0.16964 (3)	2.67 (1)
Cl	0.0374 (2)	0.0412 (3)	0.1450 (2)	4.51 (6)
C3	0.1433 (2)	0.2091 (2)	0.2115 (1)	3.66 (5)
C4	0.4825 (2)	0.0222 (2)	0.2037 (2)	3.77 (5)
C5	0.3762 (2)	0.1374 (2)	0.2923 (1)	3.64 (5)
C7	0.3661 (2)	-0.2506 (2)	0.1375 (2)	4.03 (5)
C8	0.3173 (2)	-0.1659 (2)	0.2764 (10	3.70 (5)
C21	0.1443 (1)	-0.0008 (2)	0.2877 (1)	3.04 (4)
C22	0.1084 (2)	-0.1053 (2)	0.2955 (2)	4.70 (5)
C23	0.1123 (2)	-0.1529 (2)	0.3700 (2)	6.72 (7)
C24	0.1503 (2)	-0.0982 (3)	0.4352 (2)	6.67 (8)
C25	0.1834 (2)	0.0051 (3)	0.4287 (2)	5.79 (8)
C26	0.1806 (2)	0.0542 (2)	0.3554 (1)	4.06 (5)
C61.	0.4067 (1)	0.2277 (2)	0.1472 (1)	3.11 (4)
C62	0.3554 (2)	0.3203 (2)	0.1535 (2)	4.08 (5)
C63	0.3706 (2)	0.4191 (2)	0.1174 (2)	5.42 (7)
C64	0.4373 (2)	0.4289 (3)	0.0748 (2)	6.50 (8)
C65	0.4883 (2)	0.3385 (3)	0.0681 (2)	6.16 (7)
C66	0.4737 (2)	0.2373 (3)	0.1029 (2)	4.42 (6)
C91	0.1916 (1)	-0.2606 (2)	0.1566 (1)	3.08 (4)
C92	0.1169 (2)	-0.2344 (2)	0.1073 (1)	3.42 (5)
C93	0.0482 (2)	-0.3081 (2)	0.0974 (2)	4.37 (5)
C94	0.0553 (2)	-0.4092 (2)	0.1364 (2)	5.33 (6)
C95	0.1290 (2)	-0.4362 (2)	0.1852 (2)	5.45 (7)
C96	0.1967 (2)	-0.3624 (2)	0.1957 (2)	4.33 (6)
B1	0.2006 (2)	-0.0246 (2)	-0.0893 (1)	2.98 (5)
B2	0.1804 (2)	0.1179 (2)	-0.0789 (1)	3.26 (5)
B3	0.1654 (2)	0.0118 (2)	-0.0002 (1)	2.59 (4)
B4	0.2498 (1)	-0.0878 (2)	-0.0006 (1)	2.51 (4)
B5	0.3131 (2)	-0.0483 (2)	-0.0736 (1)	2.97 (5)
B6	0.2723 (2)	0.0776 (3)	-0.1176 (1)	3.30 (5)
B9	0.3539 (1)	-0.0283 (2)	0.0275 (1)	2.45 (4)
B10	0.3656 (2)	0.0806 (2)	-0.0484 (1)	3.17 (5)
B11	0.2844 (2)	0.1859 (2)	-0.0500 (1)	3.28 (5)
H	0.367 (2)	0.080 (2)	0.021 (1)	4.6 (6)

Table 2. Comparison of cage interatomic distances $(\AA), \mathrm{Rh}-\mathrm{P}$ distances (\AA) and $\mathrm{P}-\mathrm{Rh}-\mathrm{P}$ angles $\left(^{\circ}\right)$ in (I) and (II) with e.s.d.'s in parentheses

	(II)	(I)	(II) - (I)	[(II)-(I)]/e.s.d.
Rh8-S7	2.3757 (5)	2.3769 (6)	-0.0012	2
Rh8-B3	2.274 (2)	2.242 (4)	0.032	8
Rh8-B4	2.243 (2)	2.236 (3)	0.007	2
Rh8-B9	2.254 (2)	2.146 (3)	0.108	36
S7-B2	1.999 (2)	1.986 (4)	0.013	3
S7-B3	2.061 (2)	2.035 (4)	0.026	7
S7-B11	1.914 (3)	1.908 (4)	0.006	2
$B-B$ range	1.734 (4)-1.896 (4) 1.713 (6)-1.887 (5)			
Rh8-P1	2.4538 (6)	- 4197		
Rh8-P2	2.3869 (5)	2.4197 (5)	-0.0328	66
Rh8-P3	2.2979 (5)	2.2906 (5)	0.0073	15
$\mathrm{Pl}-\mathrm{Rh} 8$ - P 2	99.44 (2)	-		
Pl -Rh8-P3	94.06 (2)	-		
P2-Rh8-P3	95.88 (2)	98.50 (2)		

of the third phosphine in (II) is a localized one, i.e. the lengthening of the $\mathrm{Rh}-\mathrm{B} 9$ distance trans to this additional third phosphine, P 1 in Fig. 1. Otherwise the architectures of the RhSB_{9} cages in (I) and (II) are remarkably similar. For example, compare the range of $B-B$ distances in (II) [1.734 (4)1.896 (4) \AA] with that in (I) $[1.713$ (6)-1.887 (5) \AA].

Table 3. Selected dimensions ($\AA,{ }^{\circ}$) for (II) with e.s.d.'s in parentheses

Fig. 1. A view of (II). Atoms are shown as spheres or ellipsoids of an arbitrary size and methyl and phenyl H atoms are omitted.

The $\mathrm{Rh}-\mathrm{P}$ bond distances in (I) were 2.2906 (5) \AA for the P atom trans to S and 2.4197 (5) \AA for the P atom perpendicular to the RhSB_{3} face, Table 2. In (II) the comparable distances are 2.2979 (5) and 2.3869 (5) \AA. The third $\mathrm{Rh}-\mathrm{P}$ distance in (II) is 2.4538 (6) \AA. The $\mathrm{P}-\mathrm{Rh}-\mathrm{P}$ angles are greater than 90° in both (I) and (II), Table 2. For (II) the values are $\mathrm{Pl}-\mathrm{Rh}-\mathrm{P} 299.44$ (2), $\mathrm{P} 1-\mathrm{Rh}-\mathrm{P} 3$ 94.06 (2) and P2-Rh-P3 95.88 (2).

All $\mathrm{P}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ distances are normal. The B9-H and B10-H distances (Table 3) are 1.32 (3)
and 1.19 (2) \AA with B9-H-B10 96 (2) ${ }^{\circ}$; the corresponding dimensions for (I) were 1.21 (3), 1.30 (3) \AA and $96(2)^{\circ}$. There are no unusual intermolecular contact distances.

GF thanks NSERC Canada for Grants in Aid of Research and TRS thanks Johnson Matthey plc for the generous loan of Rh salts.

References

B. A. Frenz \& Associates, Inc. (1983). SDP-Plus. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
Ferguson, G., Jennings, M. C., Lough, A. J., Coughlan, S., Spalding, T. R., Kennedy, J. D., Fontaine, X. L. R. \& Stibr, B. (1990). J. Chem. Soc. Chem. Commun. pp. 891-894.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
$\mathrm{W}_{\text {ADE, }}$ K. (1976). Adv. Inorg. Chem. Radiochem. 18, 1-63.

Structure of Bis(salicylato)bis(2-pyridylmethanol)copper(II)

By N. N. Hoang
Slovak Hydrometeorological Institute, National Telecommunication Center, Airport, Ivanka, 82310 Bratislava, Czechoslovakia

F. Valach
Department of Chemical Physics, Faculty of Chemical Technology, Slovak Technical University, 81237 Bratislava, Czechoslovakia

and M. Dunaj-Jurčo and M. Melník
Department of Inorganic Chemistry, Faculty of Chemical Technology, Slovak Technical University, 81237 Bratislava, Czechoslovakia
(Received 19 March 1991; accepted 15 August 1991)

Abstract

Cu}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right], \quad M_{r}=556.03\), monoclinic, $\quad C 2 / c, \quad a=15.786(1), \quad b=13.299$ (2), $c=12.083(1) \AA, \quad \beta=97.22(1)^{\circ}, \quad V=2516.73 \AA^{3}$, $Z=4, \quad D_{m}=1.45, \quad D_{x}=1.46 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=$ $1.54178 \AA, \quad \mu=16.389 \mathrm{~cm}^{-1}, \quad F(000)=1148, \quad T=$ 293 K , final $R=0.046$ for 1300 observed reflections. The copper(II) atom is situated on a centre of symmetry, and has distorted octahedral coordination. It is bonded in a trans square-planar arrangement to the nitrogen atoms of two 2-pyridylmethanols $[\mathrm{Cu}-\mathrm{N}=1.981$ (1) $\AA]$ and one carboxylate oxygen from each of two salicylate anions $[\mathrm{Cu}-\mathrm{O}=$ 1.981 (2) $\AA]$. The remaining axial positions are occupied by methanol oxygen atoms of two 2-pyridylmethanol ligands $[\mathrm{Cu}-\mathrm{O}=2.331$ (1) $\AA]$.

Introduction. Monomeric Cu (carboxylate) ${ }_{2}$ (substituted pyridine) ${ }_{2}$ complexes have been reported for a variety of carboxylates including salicylic acid (Doedens, 1976; Melník, 1981; Hanic, Štempelová \& Hanicová, 1961) but not 2-pyridylmethanol (2-pyridylcarbinol). We report the crystal structure of bis-(salicylato)bis(2-pyridylmethanol)copper(II).

0108-2701/92/030443-03\$03.00

Experimental. The blue crystals of $\mathrm{Cu}(\mathrm{sal})_{2}(2 \text {-pycar })_{2}$ (sal = salicylate, 2-pycar $=2$-pyridylmethanol) were prepared by treating 2-pyridylmethanol $(2.18 \mathrm{~g}$, 0.02 mol) with copper(II) salicylate ($4.22 \mathrm{~g}, 0.01 \mathrm{~mol}$) in hot methanol solution. The solution was left to stand at room temperature. The crude product was recrystallized from methanol to give monocrystals. Prismatic crystal with dimensions $0.25 \times 0.72 \times$ 0.81 mm ; D_{m} by flotation in $\mathrm{CHBr}_{3} / \mathrm{CH}_{3} \mathrm{OH}$; Syntex $P 2_{1}$ diffractometer, $\lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.54178 \AA$, graphite monochromator, $\theta / 2 \theta$ scan, $2 \theta_{\max }=110^{\circ}$, time per reflection $c a 60 \mathrm{~s}$, two standard reflections, variation $2 \%, 14$ reflections with $11.0 \leq 2 \theta \leq 32.1^{\circ}$ were used for refinement of lattice parameters; an absorption correction was applied, maximum and minimum transmission factors 0.746 and 0.602 ; index range $-16 \leq h \leq 15,0 \leq k \leq 13,0 \leq l \leq 12 ; 3461$ reflections measured, 1549 unique, $R_{\text {int }}=0.06,1300$ observed reflections for $F \geq 3 \sigma(F)$. Data reduction was performed by program XP21 (Pavelčík, 1987). All nonhydrogen atoms were located by direct methods using SHELXS86 (Sheldrick, 1990). Refinement by full-matrix least squares based on F values (169 © 1992 International Union of Crystallography

[^1]: * Lists of structure factors, calculated H-atom coordinates, anisotropic thermal parameters and complete bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54617 (65 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: MU0280]

